

Krantz

Radialer Lamellenauslass mit

- quadratischer Lamellenanordnung RL-Q2....
- runder Lamellenanordnung RL-R2....

Luftführungssysteme

mit quadratischer und runder Lamellenanordnung

Vorbemerkung

Der Radiale Lamellenauslass RL-Q2 / RL-R2 von Krantz erzeugt eine turbulente Mischströmung. Er dient zur Zuluft- und Abluftführung im Komfortbereich und wurde akustisch und strömungstechnisch optimiert. Dabei wurden als wichtigste luftführende Elemente die Lamellen komplett neu gestaltet. Die Geometrie wurde mit modernsten Entwicklungs- und Fertigungsverfahren wie CFD-Analysen und Rapid Prototyping solange verbessert, bis auch die höchsten Ansprüche an Raumluftströmung und Akustik erfüllt wurden. Dies ist zusätzlich in zahlreichen Labormessungen bestätigt worden.

Der Luftdurchlass kann sowohl deckeneben als auch freihängend montiert werden und ist in 4 verschiedenen Baugrößen lieferbar. Für besondere Einsatzzwecke wie Rand- und Eckbereiche in Räumen kann das ansonsten radial-symmetrische Ausblasverhalten durch Einsatz von speziellen Abdeckungen individuell angepasst werden.

Konstruktiver Aufbau

Der Radiale Lamellenauslass besteht im Wesentlichen aus dem Luftdurchlasselement 1 mit quadratischer Sichtfläche und den Lamellen 1a für den radialen Luftaustritt. Das Luftdurchlasselement ist sowohl mit quadratischer als auch mit runder Lamellenanordnung lieferbar (Bild 2).

Die Luftzufuhr erfolgt über den Anschluss-Stutzen 3, der sowohl wahlweise mit und ohne Lippendichtung 7 als auch mit und ohne Volumenstrom-Drossel 4 lieferbar ist. Die Volumenstromdrossel ist vom Raum her einstellbar. Die Luft wird weiter durch den Anschlusskasten 2 und das Luftdurchlasselement 1 mit Lamellen 1a geführt.

Das Luftdurchlasselement kann nach Lösen der Zentralbefestigung 5 leicht nach unten abgenommen werden. Die Aufhängung der gesamten Luftdurchlasseinheit erfolgt an Befestigungspunkten 6 am Anschlusskasten.

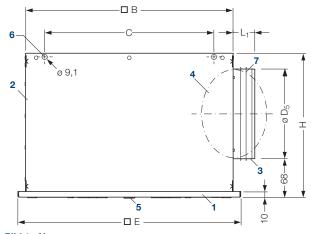
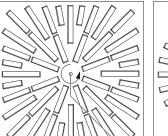


Bild 1: Abmessungen

Tabelle 1: Technische Daten und Abmessungen


Baugröße		300	400	500	600	625	
Volumenstrom 1)	m ³ /h					•	
- quadratische	V _{max}	280	430	670	10	000	
Lamellenanordnung	V _{min} 2)	60	80	165	2	240	
	V _{min} ³)	100	150	190	3	360	
- runde	\dot{V}_{max}	230	410	590	9	900	
Lamellenanordnung	V _{min} 2)	45	75	130	1	95	
	V _{min} 3)	90	130	220	3	300	
Ausblashöhe	m	2,5 -	- 4,5	2	2,7 – 4,5		
Abmessungen							
В	mm	268	368	468	568		
С	mm	200	300	380	420		
D ₅	mm	159	159	199	24	49	
Е	mm	295	395	495	595	620	
Н	mm	255	255	295	34	45	
L ₁	mm	40	40		60		
Gewicht G							
- Luftdurchlass	kg	0,7	1,2	1,9	2	,7	
 Anschlusskasten 	kg	2,3	3,7	5,8	8	,5	
Max. Temperaturdifferenz		-12 K	im Küh	ılfall (de	ckenebe	en)	
Zuluft-Raumluft		-10 K	im Küh	ılfall (frei	hängen	d)	
		+10 K	(im Hei	zfall (≤ :	3 m)		
		+ 5 K	im Heiz	zfall (> 3	3 m)		

- $^{1)}$ alle Lamellen geöffnet; durch Schließen einzelner Lamellen werden \dot{V}_{max} und \dot{V}_{min} reduziert
- $^{2)}$ \dot{V}_{min} deckeneben
- 3) V_{min} freihängend

Legende

- 1 Luftdurchlasselement
- 1a Lamellen
- 2 Anschlusskasten
- 3 Anschluss-Stutzen
- 4 Volumenstrom-Drossel
- 5 Zentralbefestigung
- 6 Befestigungspunkte
- 7 Lippendichtung

quadratische Lamellenanordnung

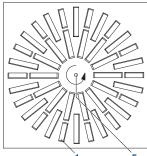


Bild 2: Sichtfläche für quadratische und runde Lamellenanordnung

Lufttechnische Funktion

Lufttechnische Funktion

Der Radiale Lamellenauslass erzeugt turbulente Mischlüftung mit hochinduktiven, radialen Luftstrahlen. Die Ausblasrichtung der Luft ist horizontal.

Durch die speziell angepasste Lamellengeometrie ist mit derselben Frontplatte sowohl eine deckenebene als auch freihängende Anordnung möglich. Die Luftstrahlen treten mit hoher Geschwindigkeit flach unter der Platte aus. Durch die radiale Anordnung der Lamellen wird die Luft unter Einfluss der Fliehkraft auch bei freihängender Anordnung weit über die Platte hinaus nach außen getragen. Bei deckenebener Anordnung legt der Luftstrahl sich durch den Coanda-Effekt an die Decke an. Durch die große Auffächerung der Luftstrahlen ist eine starke Induktion mit der Raumluft und somit ein guter Abbau von Impuls und Temperatur, garantiert.

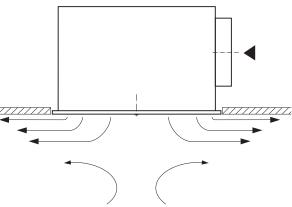


Bild 3: Strahlcharakteristik bei deckenebener Luftdurchlassanordnung

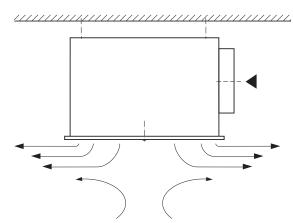


Bild 4: Strahlcharakteristik bei freihängender Luftdurchlassanordnung

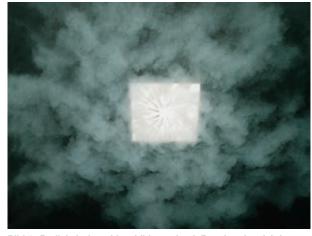


Bild 5: Radiale Luftstrahlausbildung, durch Rauchprobe sichtbar

Bild 6: Radialer Lamellenauslass, deckeneben eingebaut

Anmerkung:

Bei freihängender Anordnung empfehlen wir, die Temperaturdifferenz zwischen Zuluft und Raumluft (bzw. Abluft) auf -10 K zu begrenzen. Hierdurch werden auch bei kleinen Volumenströmen stabile horizontale Luftstrahlen erzeugt.

Der Radiale Lamellenauslass als Abluftdurchlass kann mit und ohne Lamellen geliefert werden.

mit quadratischer Lamellenanordnung

Ausblasrichtungen und Volumenströme

- quadratische Lamellenordnung

Mit dem Radialen Lamellenauslass kann 4-, 3- oder 2-seitig ausgeblasen werden. Bei 4-seitigem Ausblasen sind alle Lamellen geöffnet. Soll 3-seitig oder 2-seitig symmetrisch bzw. 2-seitig asymmetrisch ausgeblasen werden, sind verschiedene Lamellenbereiche zu schließen. Der Volumenstrom wird reduziert. Bild 7 zeigt für die einzelnen Ausblasrichtungen die jeweils offenen bzw. zu schließenden Lamellenbereiche. Die entsprechenden Faktoren für die Volumenstrom-Reduzierung können der folgenden Tabelle entnommen werden. Es gilt: $\dot{V}_{\rm Red} = \dot{V}_{\rm A} \cdot {\rm F}$

Tabelle 2: Volumenstrom-Faktor F bei quadratischer Lamellenanordnung

Baugröße	600 / 625	500	400	300
4-seitig	1,00	1,00	1,00	1,00
3-seitig	0,80	0,80	0,72	0,81
2-seitig	0.59	0.60	0.50	0,62
symm.	0,59	0,60	0,50	0,02
2-seitig	0.57	0.57	0.50	0,62
asymm.	0,57	0,57	0,50	0,02

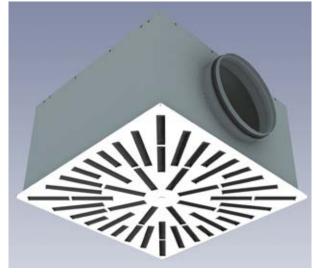


Bild 8: Radialer Lamellenauslass mit quadratischer Lamellenanordnung, Baugröße 600

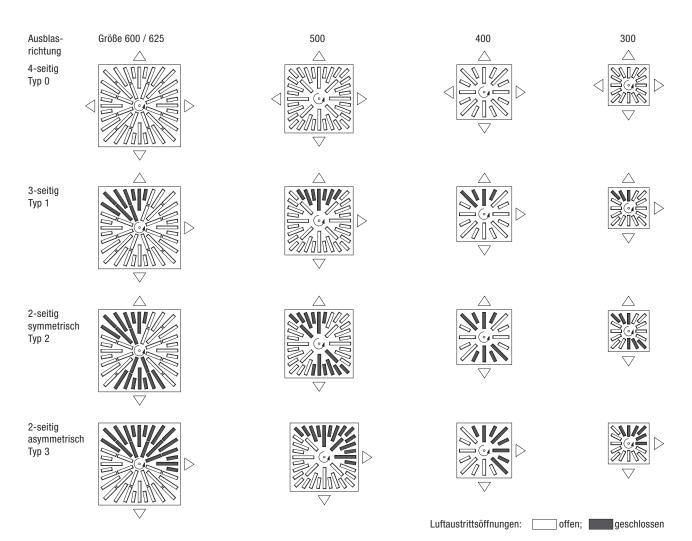


Bild 7: Ausblasrichtungen durch Verschließen einzelner Luftaustrittsöffnungen, quadratische Lamellenanordnung

Radialer Lamellenauslass mit runder Lamellenanordnung

Ausblasrichtungen und Volumenströme

- runde Lamellenanordnung

Für die Ausführung mit runder Lamellenanordnung gilt das gleiche wie für die quadratische Anordnung. Bild 9 zeigt für die verschiedenen Ausblasrichtungen die jeweils offenen bzw. zu schließenden Lamellenbereiche. Der Tabelle können die zugehörigen Volumenstrom-Faktoren entnommen werden. Es gilt: $\dot{V}_{Red} = \dot{V}_{A} \cdot F$

Tabelle 3: Volumenstrom-Faktor F bei runder Lamellenanordnung

Baugröße	600 / 625	500	400	300
4-seitig	1,00	1,00	1,00	1,00
3-seitig	0,83	0,80	0,75	0,75
2-seitig	0.66	0.61	0.50	0,50
symm.	0,00	0,01	0,00	0,00
2-seitig	0.60	0.58	0.55	0,58
asymm.	0,00	0,00	0,55	0,56

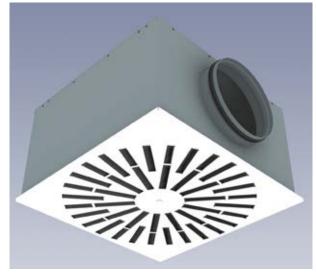


Bild 10: Radialer Lamellenauslass mit runder Lamellenanordnung, Baugröße 600

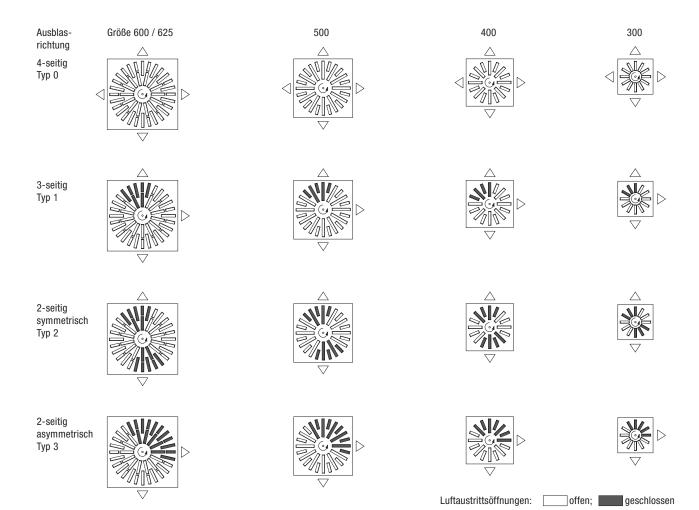
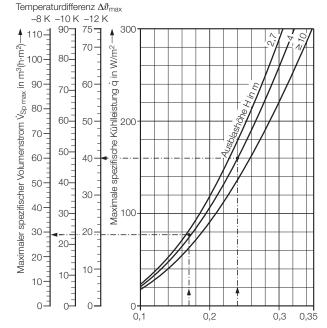


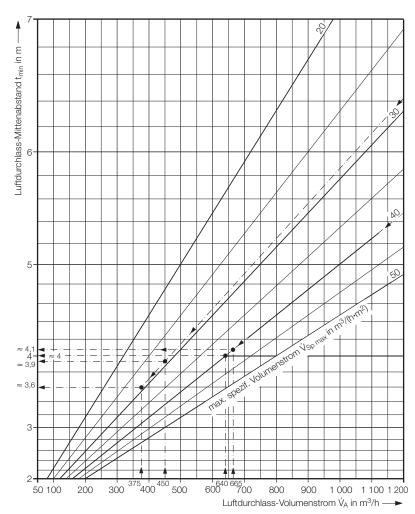
Bild 9: Ausblasrichtungen durch Verschließen einzelner Luftaustrittsöffnungen, runde Lamellenanordnung

Behaglichkeitskriterien


Behaglichkeitskriterien 1)

Die Auslegung des Luftdurchlasses basiert auf Einhaltung der maximal zulässigen Raumluftgeschwindigkeiten u im Aufenthaltsbereich im Kühlfall. Die Raumluftgeschwindigkeit ist abhängig von der Kühllast, die aus dem Raum abgeführt werden soll. Die maximale spezifische Kühlleistung q ist abhängig von der Ausblashöhe und der maximal zulässigen Raumluftgeschwindigkeit u (Diagramm 1).

Der maximale spezifische Volumenstrom $\dot{V}_{Sp~max}$ lässt sich in Abhängigkeit von der maximalen spezifischen Kühlleistung und der maximalen Temperaturdifferenz $\Delta \vartheta_{max}$ im Kühlfall grafisch bestimmen (Diagramm 1). Der dem Raum zugeführte Volumenstrom $\dot{V}_{SD~tats}$ darf diesen Wert nicht überschreiten.


Anhand des maximalen spezifischen Volumenstroms lässt sich mit Diagramm 2 der minimale Mittenabstand zwischen zwei Luftdurchlässen bestimmen.

¹⁾ Siehe auch TB 69 "Auslegungskriterien für thermische Behaglichkeit"

Maximal zulässige Raumluftgeschwindigkeit u in m/s →

Diagramm 1: Maximaler spezifischer Volumenstrom

Legende zur Auslegung:

 $\dot{V}_{A \text{ max}} = \text{max. Volumenstrom je Luftdurchlass im Kühlfall}$ in m^3/h

 $\dot{V}_{A \; min} = min. \; Volumenstrom je Luftdurchlass im Kühlfall in <math>m^3/h$

 \dot{V}_A = Volumenstrom je Luftdurchlass in m³/h

V_{Sp max} = max. spezif. Volumenstrom pro m² Raumfläche in m³/(h⋅m²)

 $\dot{V}_{Sp~tats} = tats$ ächlicher spezifischer Volumenstrom pro m² Raumfläche in m³/(h·m²)

= max. zulässige Raumluftgeschwindigkeit in m/s = max. spezifische Kühlleistung in W/m²

 $\Delta \vartheta_{\text{max}} = \text{max}$. Temperaturdifferenz Zuluft-Abluft in K $t_{\text{min}} = \text{min}$. Luftdurchlass-Mittenabstand in m

H = Ausblashöhe in m

 L_{WA} = Schall-Leistungspegel in dB(A)

 Δp_t = Gesamtdruckverlust in Pa

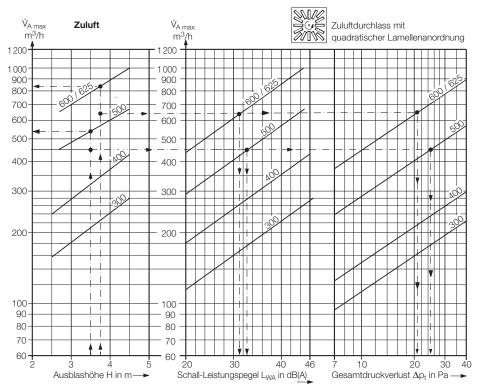
Baugröße 500 (s. Auslegungsbeispiele Seite 7)

 \dot{V}_A gewählt = 450 m³/h $\dot{V}_{Sp \text{ max}}$ = 29 m³/(h•m²) t_{min} \approx 3,9 m

Baugröße 600 (s. Auslegungsbeispiele Seite 7)

 \dot{V}_A gewählt = 640 m³/h $\dot{V}_{Sp max}$ = 40 m³/(h•m²)

 t_{min} \approx 4 m


Baugröße 500 (s. Auslegungsbeispiele Seite 9)

 $\begin{array}{lll} \dot{V}_{A} \, \text{gew\"{a}hlt} & = & 375 \, \text{m}^3/\text{h} \\ \dot{V}_{Sp \, max} & = & 29 \, \text{m}^3/(\text{h} \cdot \text{m}^2) \\ t_{min} & \approx & 3,6 \, \text{m} \end{array}$

Baugröße 600 (s. Auslegungsbeispiele Seite 9)

 \dot{V}_A gewählt = 665 m³/h $\dot{V}_{Sp \text{ max}}$ = 40 m³/(h•m²) t_{min} \approx 4,1 m

mit quadratischer Lamellenanordnung, Auslegung als Zuluftdurchlass

Zu beachten:

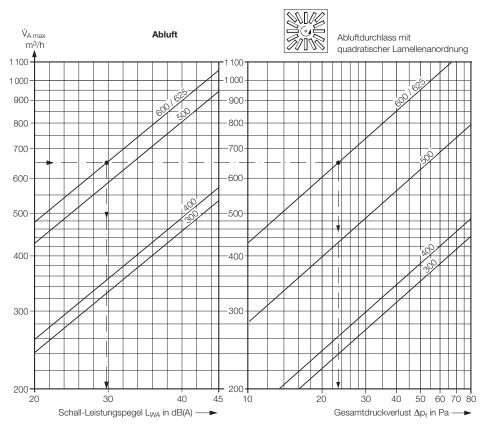
Tabelle 4: Minimaler Volumenstrom $\dot{\mathbf{V}}_{min}$

Bau- größe	decken- bündig	freihängend
300	21 % • V _{max}	36 % • V _{max}
400	19 % • V _{max}	35 % • V _{max}
500	25 % • V _{max}	28 % • V _{max}
600 / 625	24 % • V _{max}	36 % · V _{max}

Für drei- und zweiseitiges Ausblasen wird der Volumenstrom reduziert; siehe Angaben Tabelle 2 Seite 4 und Auslegungsbeispiel Baugröße 600, unten.

Tabelle 5: Schall-Leistungspegel und Druckverlust

Tabelle 5. 50		- turigo	Jogo.	unu	D. uo.					
Luft- durchlass- Volumen-	Druck- verlust		Schall-Leistungspegel L_W in dB							
strom										
\dot{V}_{A}	Δp_t	L _{WA}					. '	nz in F		
m ³ /h	Pa	dB(A)	63	125	250	500	1 K	2 K	4 K	8 K
Baugröße 3	300									
100	8	17	31	29	22	14	< 10	< 10	< 10	< 10
150	17	28	33	35	31	26	19	< 10	< 10	< 10
200	30	35	36	41	38	34	29	19	< 10	< 10
250	47	42	40	45	44	41	37	29	< 10	< 10
Baugröße 4	100									
200	17	23	17	27	28	20	11	< 10	< 10	< 10
250	27	29	22	32	34	26	21	< 10	< 10	< 10
300	39	35	26	36	40	31	28	17	< 10	< 10
350	53	39	29	39	44	36	35	24	< 10	< 10
Baugröße 5	500									
300	11	20	47	25	24	16	< 10	< 10	< 10	< 10
400	19	29	45	33	33	25	21	10	< 10	< 10
500	30	36	45	39	40	33	30	20	< 10	< 10
600	44	42	46	44	45	39	38	28	< 10	< 10
Baugröße 6	600 / 625									•
550	15	26	32	33	31	26	16	1	< 10	< 10
700	25	34	39	39	37	33	26	14	< 10	< 10
850	37	40	44	44	43	38	35	24	10	< 10
1 000	51	45	49	49	47	43	42	33	19	< 10


Tabelle 6: Auslegungsbeispiele

Quadratische Lamellenanord	nung				
Baugröße		500	500 600		
Einsatzort		Groß- raum- büro	raum-		
1 Zuluft-Volumenstrom V	m ³ /h	18 000	40 0	00	
2 Ausblashöhe H	m	3,5	3,7	,	
3 Raumfläche A	m ²	720	2 40	00	
4 max. zul. Schall-LeistungspegelL _{WA}	dB(A)	40	40		
5 Temperaurdifferenz Zuluft-Ab	luft K	-8	-12	2	
6 Ausblasrichtung		alle 4-seitig	6 Stück 3-seitig	Rest 4-seitig	
7 Behaglichkeitskriterien (s. Sei – max. zul. Raumluftgeschwindigkeit u – max. spezif. Volumenstrom V _{Sp max} u – tats. spezif. Volumenstrom V _{Sp tats} [aus 1:3] m ³ /(h•r Kriterium erfüllt, wenn V _{Sp tats}	m/s m ³ /(h•m ²)	0,17 29 25	0,24 40 17		
Aus Nomogramm					
8 V _{A max}	m ³ /h	537	835 668 ¹⁾ (835•0,8)	835	
9 V _A gewählt	m ³ /h	450	512 ¹⁾ (640•0,8)	640	
10 Z	Stück	40 [aus 1 : 9]	6 (Vor- gabe)	58 ²⁾	
11 L _{WA}	dB(A)	≈ 33	31	31	
12 Δp _t	Pa	25	≈ 21	≈ 21	
13 t _{min} [Diagr. S.6 unten]	m	≈ 3,9	≈ 4	≈ 4	

¹⁾ siehe Tabelle 2 Seite 4

²⁾ Anzahl = ⁴ ≈ 58 640

mit quadratischer Lamellenanordnung, Auslegung als Abluftdurchlass 1)

Die Diagramme und Tabellen gelten für die Ausführung ohne Lamellen.

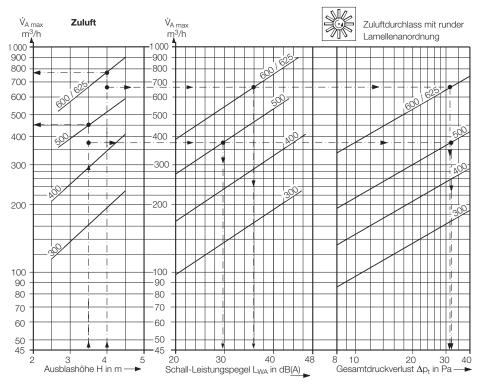
Bei Ausführung mit Lamellen liegen die Schall-Leistungspegel und Druckverluste gegenüber dem Abluftdurchlass ohne Lamellen etwas höher, und zwar um:

Tabelle 7: Höhere Schall-Leistungspegel und Druckverluste bei Einsatz als Abluftdurchlass mit Lamellen

Baugröße	ΔL _{WA} dB(A)	Δp _t %
300	23	54
400	12	52
500	11,5	35
600 / 625	5,5	31

Tabelle 8: Schall-Leistungspegel und Druckverlust

Luft-										
durchlass-	Druck-		Schall Laietungenagal L. in dB							
Volumen-	verlust		Schall-Leistungspegel L _W in dB							
strom										
V _A	Δp_t	L _{WA}		0	ktavm	ittenfi	eque	nz in H	Ηz	
m ³ /h	Pa	dB(A)	63	125	250	500	1 K	2 K	4 K	8 K
Baugröße 3	300									
250	25	23	28	29	29	19	13	< 10	< 10	< 10
300	36	28	33	33	33	24	19	< 10	< 10	< 10
400	65	36	40	41	40	32	29	20	< 10	< 10
450	83	39	43	44	44	36	33	25	< 10	< 10
Baugröße 4	100									
300	30	26	31	33	31	23	17	< 10	< 10	< 10
350	41	30	36	38	36	28	22	< 10	< 10	< 10
400	54	34	40	42	40	32	26	< 10	< 10	< 10
450	58	38	43	45	43	36	29	< 10	< 10	< 10
Baugröße 5	500									
400	20	19	28	25	22	16	14	< 10	< 10	< 10
500	32	26	35	32	28	23	20	15	< 10	< 10
600	45	31	40	37	34	28	26	20	< 10	< 10
700	63	36	45	42	38	33	30	25	< 10	< 10
850	93	42	51	47	44	38	36	32	< 10	< 10
Baugröße 6	600 / 625									
500	14	22	21	24	24	25	< 10	< 10	< 10	< 10
600	20	28	24	27	27	28	18	< 10	< 10	< 10
750	31	35	27	31	32	33	30	< 10	< 10	< 10
900	45	40	30	35	36	38	40	< 10	< 10	< 10


Tabelle 9: Auslegungsbeispiel

Quadratische Lamellenanordnung								
Baugröße		600	600					
Lamellen		mit	ohne					
1 Abluft-Volumenstrom V	m³/h	13 000	13 000					
Aus Nomogramm								
2 V _A gewählt	m³/h	650	650					
3 Z	Stück	20	20					
4 L _{WA}	dB(A)	≈ 35,5	≈ 30					
5 Δp _t	Pa	≈ 31	≈ 23					

Für gleiche Baugröße und gleichen Volumenstrom sind Schall-Leistungspegel und Druckverlust im Abluftbetrieb ohne Lamellen deutlich geringer als mit Lamellen (siehe Tabelle 7). Dadurch kann bei gleichen Anforderungen an den Schalldruckpegel im Raum durch Weglassen der Lamellen, die Anzahl der Luftdurchlässe deutlich verringert werden.

¹⁾ Auslieferung ohne Lamellen (Standard)

mit runder Lamellenanordnung, Auslegung als Zuluftdurchlass

Zu beachten:

Tabelle 10: Minimaler Volumenstrom

'	V _{min}
	Bau

Bau-	decken-	freihängend
größe	bündig	
300	20 % • V _{max}	39 % • V _{max}
400	18 % • V _{max}	32 % • V _{max}
500	22 % • V _{max}	37 % • V _{max}
600 / 625	22 % • V _{max}	33 % • V _{max}

Für 3- und 2-seitiges Ausblasen wird der Volumenstrom reduziert; siehe Angaben Tabelle 3 Seite 5 und Auslegungsbeispiel Baugröße 600, unten.

Tabelle 11: Schall-Leistungspegel und Druckverlust

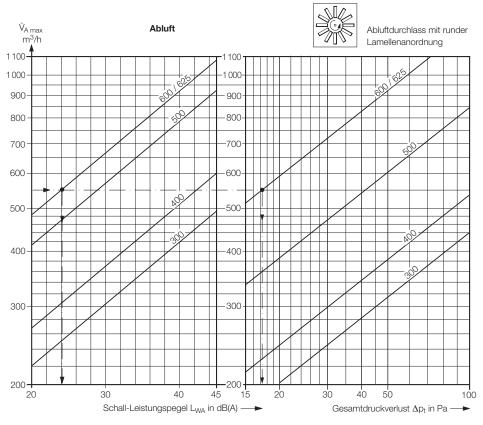

	1									
Luft-										
durchlass-	Druck-		Schall-Leistungspegel Lw in dB							
Volumen-	verlust		Schail-Leistungspeger L _W in db							
strom										
V _A	Δp_t	L _{WA}		0	ktavm	ittenf	requei	nz in F	Ηz	
m ³ /h	Pa	dB(A)	63	125	250	500	1 K	2 K	4 K	8 K
Baugröße 3	300									
100	11	21	23	27	25	19	10	< 10	< 10	< 10
125	17	28	29	33	31	26	18	< 10	< 10	< 10
150	25	33	34	37	37	31	25	14	< 10	< 10
175	34	38	38	41	41	36	31	21	< 10	< 10
200	45	41	41	45	45	40	36	27	13	< 10
Baugröße 4	100									
150	10	16	30	23	22	14	< 10	< 10	< 10	< 10
200	19	25	32	31	30	22	15	< 10	< 10	< 10
250	30	32	34	38	37	29	23	11	< 10	< 10
300	44	37	36	43	42	34	31	20	< 10	< 10
350	60	42	38	47	47	39	37	28	< 10	< 10
Baugröße 5	500									
240	13	16	24	24	21	14	< 10	< 10	< 10	< 10
320	23	25	30	32	30	22	13	< 10	< 10	< 10
400	36	31	34	38	36	29	22	11	< 10	< 10
500	57	38	39	44	43	35	32	22	< 10	< 10
600	82	44	43	50	49	40	40	32	< 10	< 10
Baugröße 6	600 / 625									
500	18	28	34	34	33	27	19	< 10	< 10	< 10
600	26	33	39	39	38	32	26	15	< 10	< 10
700	36	38	43	44	42	36	31	22	10	< 10
800	47	42	46	47	46	39	36	27	17	< 10

Tabelle 12: Auslegungsbeispiele

Runde Lamellenanordnung					
Baugröße	500	600			
Einsatzort	Groß- raum- büro	Kaufhaus			
1 Zuluft-Volumenstrom V	Zuluft-Volumenstrom V m ³ /h			00	
2 Ausblashöhe H	m	3,5	4		
3 Raumfläche A	m ²	720	2 400		
4 max. zul. Schall-Leistungspegel L _{WA}	dB(A)	40	40		
5 Temperaurdifferenz Zuluft-A	Abluft K	-8	-12		
6 Ausblasrichtung		alle 4-seitig	6 Stück 3-seitig	Rest 4-seitig	
7 Behaglichkeitskriterien (s. Seite 6) - max. zul. Raumluftgeschwindigkeit u m/s - max. spezif. Volumenstrom Vsp max m³/(h·m²) - tats. spezif. Volumenstrom Vsp tats [aus 1:3] m³/(h·m²) Kriterium erfüllt, wenn Vsp tats < Vsp max		0,17 29 25	0,24 40 17		
Aus Nomogramm					
8 V _{A max}	m ³ /h	450	639 ¹⁾ (770•0,83)	770	
9 V _A gewählt	m ³ /h	375	552 ¹⁾ (665•0,83)	665	
10 Z	Stück	48 [aus 1 : 9]	6 (Vorgabe)	56 ²⁾	
11 L _{WA}	dB(A)	≈ 30	≈ 36	≈ 36	
12 Δp _t	Pa	≈ 32	≈ 31	≈ 31	
13 t _{min} [Diagr. S.6 unten]	m	≈ 3,6	≈ 4.1	≈ 4,1	

⁶⁶⁵

mit runder Lamellenanordnung, Auslegung als Abluftdurchlass 1)

Die Diagramme und Tabellen gelten für die Ausführung ohne Lamellen.

Bei Ausführung **mit Lamellen** liegen die Schall-Leistungspegel und Druckverluste gegenüber dem Abluftdurchlass ohne Lamellen etwas höher, und zwar um:

Tabelle 14: Höherer Schall-Leistungspegel und Druckverluste bei Einsatz als Abluftdurchlass mit Lamellen

Baugröße	ΔL _{WA} dB(A)	Δp _t %			
300	27	63			
400	23	44			
500	20	40			
600 / 625	11	39			

Tabelle 13: Schall-Leistungspegel und Druckverlust

Luft-										
durchlass-	Druck-	0-1-111-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1								
Volumen-	verlust		Schall-Leistungspegel L _W in dB							
strom										
V _A	Δp_t	L _{WA} Oktavmittenfrequenz in Hz								
m ³ /h	Pa	dB(A)	63	125	250	500	1 K	2 K	4 K	8 K
Baugröße 3	00									
200	20	18	36	24	22	15	11	< 10	< 10	< 10
300	46	30	40	34	33	27	24	16	< 10	< 10
400	82	38	44	42	41	35	33	28	18	< 10
450	104	42	46	45	44	39	37	33	24	< 10
Baugröße 4	Baugröße 400									
300	32	23	24	31	29	22	< 10	< 10	< 10	< 10
350	43	28	29	36	33	27	< 10	< 10	< 10	< 10
400	56	32	33	40	38	31	< 10	< 10	< 10	< 10
450	70	36	36	44	41	34	< 10	< 10	< 10	< 10
Baugröße 5	Baugröße 500									
465	29	22	35	29	30	17	< 10	< 10	< 10	< 10
555	42	29	35	34	34	22	< 10	< 10	< 10	< 10
625	53	33	36	36	38	26	< 10	< 10	< 10	< 10
725	72	38	38	40	43	31	< 10	< 10	< 10	< 10
Baugröße 600 / 625										
500	14	21	24	26	25	24	< 10	< 10	< 10	< 10
600	21	27	27	30	28	27	18	< 10	< 10	< 10
750	33	34	30	35	39	32	29	< 10	< 10	< 10
900	48	39	33	38	37	37	38	< 10	< 10	< 10

Tabelle 15: Auslegungsbeispiel

Runde Lamellenanordnung					
Baugröße		600	600		
Lamellen		mit	ohne		
1 Abluft-Volumenstrom V	m³/h	11 000	11 000		
Aus Nomogramm					
2 V _A gewählt	m³/h	550	550		
3 Z	Stück	20	20		
4 L _{WA}	dB(A)	≈ 35	≈ 24		
5 Δp _t	Pa	≈ 24	≈ 17		

Hinweis:

Für gleiche Baugröße und gleichen Volumenstrom sind Schall-Leistungspegel und Druckverlust im Abluftbetrieb ohne Lamellen deutlich geringer als mit Lamellen (siehe Tabelle 14). Dadurch kann bei gleichen Anforderungen an den Schalldruckpegel im Raum durch Weglassen der Lamellen, die Anzahl der Luftdurchlässe deutlich verringert werden.

¹⁾ Auslieferung ohne Lamellen (Standard)

mit quadratischer und runder Lamellenanordnung

Merkmale auf einen Blick

- Turbulente Mischlüftung
- Radiale symmetrische oder asymmetrische Strahlausbreitung
- Stabile Zuluftstrahlen, auch bei minimalem Volumenstrom
- Maximale Temperaturdifferenz zwischen Zuluft und Raumluft: Deckeneben: –12 K im Kühlfall, +5 K im Heizfall (+10 K bis 3 m Raumhöhe)

Freihängend: $-10~{\rm K}$ im Kühlfall, $+5~{\rm K}$ im Heizfall ($+10~{\rm K}$ bis $3~{\rm m}$ Raumhöhe)

- Niedriger Schall-Leistungspegel
- Mit quadratischer oder runder Lamellenanordnung für deckenebene oder freihängende Installation
- Mit Anschlusskasten und eingebauter Volumenstrom-Drossel, vom Raum her einstellbar
- Luftdurchlasselement von unten leicht abnehmbar
- Sichtfläche Stahl, pulverbeschichtet (ähnlich RAL 9010, reinweiß oder nach RAL); Lamellen aus Polycarbonat (eingefärbt ähnlich RAL 9005, schwarz oder RAL 9010, reinweiß); Anschlusskasten Stahl, verzinkt
- In 4 Baugrößen lieferbar ¹⁾
- · Auch als Abluftdurchlass einsetzbar

Typenbezeichnung

Lamellenanordnung

Q2 = quadratische Lamellenanordnung

R2 = runde Lamellenanordnung

Quadratische Sichtfläche

 $300 = 295 \times 295$

 $400 = 395 \times 395$

 $500 = 495 \times 495$ $600 = 595 \times 595$

 $625 = 620 \times 620$

Baugröße 1)

300 = Baugröße 300

400 = Baugröße 400

500 = Baugröße 500

600 = Baugröße 600

Zu- / Abluft

Z = Zuluftdurchlass

= Abluftdurchlass

Lamellenstellung

Zuluft

0 = Ausblasrichtung 4-seitig

1 = Ausblasrichtung 3-seitig

2 = Ausblasrichtung 2-seitig symmetrisch (180°)

3 = Ausblasrichtung 2-seitig asymmetrisch (90°)

Abluft

N = ohne Lamellen

H = mit Lamellen

Anschlussart

O = ohne Anschlusskasten

(nur Luftdurchlasselement mit Mittenbefestigung)

KO = Anschlusskasten ohne Dichtung am Stutzen

KD = Anschlusskasten mit Dichtung am Stutzen

Drossel

O = ohne Volumenstrom-Drossel

R = mit Volumenstrom-Drossel, vom Raum her einstellbar

Oberfläche

9010= Farbton der Sichtfläche nach RAL 9010, seidenmatt

.... = Farbton der Sichtfläche nach RAL ...

Farbe Ausblaselement

S = Schwarz ähnlich RAL 9005

W = Weiß ähnlich RAL 9010

¹⁾ Baugröße 800 auf Anfrage

Ausschreibungstext

Ausschreibungstext – Zuluftdurchlass

Stück

Radialer Lamellenauslass zur Erzeugung hochinduktiver radialer Luftstrahlen für hochwertige Raumluftströmung, mit symmetrischer oder asymmetrischer Strahlausbreitung, für den Einbau deckeneben oder freihängend,

bestehend aus:

- Luftdurchlass mit quadratischer Sichtfläche und radialen, linearen Luftaustrittsöffnungen, wahlweise in quadratischer oder runder Anordnung, Ausblasrichtung wahlweise 4-seitig, 3-seitig, 2-seitig symmetrisch oder 2-seitig asymmetrisch, die Lamellenunterseite ist nahezu eben mit der Sichtfläche; inklusive zentraler Befestigungsschraube mit Abdeckkappe,
- Anschlusskasten mit integrierter Luftdurchlass-Mittenbefestigung, Bohrungen für die Aufhängung in den oberen Aufhängeleisten, seitlichem Anschluss-Stutzen, optional mit Lippendichtung, wahlweise mit eingebauter Volumenstrom-Drossel, vom Raum her einstellbar.

Werkstoff:

- Luftdurchlass aus verzinktem Stahlblech mit Pulverbeschichtung, Farbton Sichtfläche lackiert nach RAL 9010, reinweiß 1)
- Lamellen aus Polycarbonat PC-GF 10, eingefärbt ähnlich RAL 9005, tiefschwarz oder ähnlich RAL 9010, reinweiß
- Anschlusskasten aus verzinktem Stahlblech

Fabrikat: Krantz
Typ: RL - _ - _ / _ - Z - _ - _ _ - _ -

- Abluftdurchlass

..... Stück

Radialer Lamellenauslass als Abluftdurchlass, für den Einbau deckeneben oder freihängend,

bestehend aus:

- Luftdurchlass mit quadratischer Sichtfläche und radialen, linearen Lufteintrittsöffnungen, wahlweise in quadratischer oder in runder Anordnung, Lamellenunterseite nahezu eben mit der Sichtfläche, wahlweise mit und ohne Lamellen lieferbar; inklusive zentraler Befestigungsschraube mit Abdeckkappe,
- Anschlusskasten mit integrierter Luftdurchlass-Mittenbefestigung, Bohrungen für die Aufhängung in den oberen Aufhängeleisten, seitlichem Anschluss-Stutzen, optional mit Lippendichtung sowie mit eingebauter Volumenstrom-Drossel, vom Raum her einstellbar.

Werkstoff:

- Luftdurchlass aus verzinktem Stahlblech mit Pulverbeschichtung, Farbton Sichtfläche lackiert nach RAL 9010, reinweiß 1)
- Lamellen aus Polycarbonat PC-GF 10, eingefärbt ähnlich RAL 9005, tiefschwarz oder ähnlich RAL 9010, reinweiß
- Anschlusskasten aus verzinktem Stahlblech ²⁾

Fabrikat: Krantz
Typ: RL - _ - _ / _ - A - _ - _ - _ - _

Technische Änderungen vorbehalten.

¹⁾ andere Farben auf Anfrage

²⁾ auf Anfrage wird der Anschlusskasten innen schwarz lackiert

Krantz GmbH

Uersfeld 24, 52072 Aachen, Germany Phone: +49 241 441-1

Fax: +49 241 441-555

info@krantz.de | www.krantz.de

